Automatic segmentation of the ventricular system from MR images of the human brain.

نویسندگان

  • H G Schnack
  • H E Hulshoff Pol
  • W F Baaré
  • M A Viergever
  • R S Kahn
چکیده

An algorithm was developed that automatically segments the lateral and third ventricles from T1-weighted 3-D-FFE MR images of the human brain. The algorithm is based upon region-growing and mathematical morphology operators and starts from a coarse binary total brain segmentation, which is obtained from the 3-D-FFE image. Anatomical knowledge of the ventricular system has been incorporated into the method in order to find all constituting parts of the system, even if they are disconnected, and to avoid inclusion of nonventricle cerebrospinal fluid (CSF) regions. A test of the method on a synthetic MR brain image produced a segmentation overlap of 0.98 between the simulated ventricles ("model") and those defined by the algorithm. Further tests were performed on a large data set of 227 1.5 T MR brain images. The algorithm yielded useful results for 98% of the images. The automatic segmentations had intra-class correlation coefficients of 0.996 for the lateral ventricles and 0.86 for the third ventricle, with manually edited segmentations. Comparison of ventricular volumes of schizophrenia patients compared with those of healthy control subjects showed results in agreement with the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 14 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2001